Skip to main content

Mechanical Characterization of Bamboo Pole for Building Engineering: A Review

Authors

N. A. Bahrin
M. K. Kamarudin
H. Mansor
Y. Sahol-Hamid
Z. Ahmad,
L. F. Lopez

Abstract

Bamboo is a sustainable and cost-effective alternative to traditional construction materials. Despite the fact that three species are well known for structural applications, namely Dendrocalamus asper, Gigantochloa scortechinii, and Gigantochloa levis, the scientific data for their mechanical characterization is scarcely available and widely dispersed. In addition, a systematic literature review appraising the study advancement of mechanical characterization of bamboo had been unavailable. This paper bridges this gap by conducting a systematic literature review (SLR) of the available literature of mechanical characterization of bamboo pole. A total of 54 relevant articles were retrieved from Scopus and snowballing and then put forward through bibliometric analysis using VOSviewer. The results showed that the distribution of data for physical and mechanical characterization of the aforementioned species was scattered due to the different location (origin), age, and initial moisture content recorded during empirical work among the researchers. This review’s importance and distinctiveness lie in its synthesis of the existing literature on bamboo mechanical characterization. The findings provide a point of reference for both academia and industry by bridging the scarcity of current bamboo engineering data and outlining future possibilities for bamboo research in the building and construction domain.

Microstructure and Mechanical Performance of Bamboo Fiber Reinforced Mill-Scale—Fly-ash Based Geopolymer Mortars

Authors

Roneh Glenn D. Libre Jr., De La Salle University
Julius L. Leaño Jr., Department of Science and Technology, Philippine Textile Research Institute
Luis Felipe Lopez, Base Bahay Foundation, Inc.
Carlo Joseph D. Cacanando, Base Bahay foundation, Inc.
Michael Angelo B. Promentilla, De La Salle University
Jason Maximino C. Ongpeng, De La Salle University

Abstract

Natural fiber reinforcement in cementitious matrices is being explored to provide an environment-friendly solution for lowering the overall carbon footprint of construction materials while giving the matrix much-needed tensile strength. Short bamboo fibers extracted from Bambusa blumeana or Kawayan tinik using 5% sodium hydroxide solution and treated with 10% aluminum sulfate solution are used to reinforce zero-cement geopolymer mortars. Bamboo fibers with varying lengths of 10 mm, 20 mm, and 30 mm are mixed with mill-scale – fly ash-based geopolymer in varying 0%, 0.5%, 1%, 1.5%, and 2% fiber loading per weight of specimen sample. Compressive strength and split tensile strength tests are administered to small cylinder samples, 50 mm in diameter by 100 mm in height, in accordance with ASTM C780. An optimum fiber length of 20 mm and fiber loading of 1.4% by weight is determined using Response Surface Methodology (RSM). The addition of bamboo fibers increased the unconfined compressive strength up to 292.41% compared to specimens without bamboo fibers. The split tensile strength also improved by up to a 355.82% increase compared to control samples. The corresponding high-strength and low-strength samples are also subjected to Fourier-transform Infrared Spectroscopy – Attenuated Total Reflectance (FTIR-ATR) to investigate and compare the stretching of bands between the raw materials and tested specimens. Scanning Electron Microscopy – Energy Dispersive X-Ray analysis (SEM-EDX) is used to show microscopic images and the elements present in the selected samples. The implications of the results on the material development of bamboo fiber-reinforced geopolymer mortar for construction are discussed.